CS 4530
Software Engineering

Lecture 12 - Debugging Il + Code Review

Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

Zoom Mechanics

Recording: This meeting is being recorded
If you feel comfortable having your camera on, please do so! If not: a photo?
| can see the zoom chat while lecturing, slack while you’re in breakout rooms
If you have a question or comment, please either:
 "Raise hand” - | will call on you

e Write “Q: <my question>” in chat - | will answer
your question, and might mention your name and ask you
a follow-up to make sure your question is addressed

* Write “SQ: <my question>" in chat - | will answer
your question, and not mention your name or expect you to
respond verbally

Today’s Agenda

Administrative:
HW3 due tomorrow!
Today’s session:
Debugging
Code Review

What are your pro debugging strategies?

Domain-specific debugging

- $ valgrind ./main
valgrlnd: C/C++ Memory Errors ==8515== Memcheck, a memory error detector
==8515== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==8515== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==8515== Command: ./main

==8515==
==8515== Conditional jump or move depends on uninitialised value(s)
==8515== at 0x400813: fail() (main.cpp:7)
: ==8515== by 0x40083F: main (main.cpp:13)
$ n /ma in ==8515==
] ==8515== Invalid read of size 4

Segmentatlon fault (core dumped) ==8515== at 0x400819: fail() (main.cpp:8)
==8515== by 0x40083F: main (main.cpp:13)
==8515== Address 0x0 is not stack'd, malloc'd or (recently) free'd
==8515==
==8515== Process terminating with default action of signal 11 (SIGSEGV): dumping core
==8515== Access not within mapped region at address 0x0
==8515== at 0x400819: fail() (main.cpp:8)
==8515== by 0x40083F: main (main.cpp:13)
==8515== If you believe this happened as a result of a stack
==8515== overflow in your program's main thread (unlikely but
==8515== possible), you can try to increase the size of the
==8515== main thread stack using the ——main-stacksize= flag.
==8515== The main thread stack size used in this run was 8388608.
==8515==
==8515== HEAP SUMMARY:
==8515== in use at exit: 72,704 bytes in 1 blocks
==8515== total heap usage: 1 allocs, 0 frees, 72,704 bytes allocated
==8515==
==8515== LEAK SUMMARY:
==8515== definitely lost: @ bytes in @ blocks
==8515== indirectly lost: 0 bytes in @ blocks
==8515== possibly lost: @ bytes in 0 blocks
==8515== still reachable: 72,704 bytes in 1 blocks
==8515== suppressed: 0 bytes in 0 blocks
==8515== Rerun with ——leak-check=full to see details of leaked memory
==8515==

https://www.valarind.ora/info/tools.html ==8515== For counts of detected and suppressed errors, rerun with: -v

==8515== Use ——track-origins=yes to see where uninitialised values come from
==8515== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 0)

https://www.valgrind.org/info/tools.html

Domain-specific debugging

TSan: Data race detector for C/C++/Go

$ cat simple_race.cc
#include <pthread.h>
#inc lude <stdio.h>

int Global;

void *Threadl(void *xx) {
Global++;
return NULL;

¥

void xThread2(void *x) {
Global-—-;
return NULL;

I

int main() {
pthread_t t[2];
pthread create(&t[0], NULL, Threadl, NULL);
pthread_create(&t[1], NULL, Thread2, NULL);
pthread_join(t[@0], NULL);
pthread_join(t[1], NULL);

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

$ clang++ simple_race.cc —-fsanitize=thread -fPIE —-pie -—g
$./a.out

WARNING: ThreadSanitizer: data race (pid=26327)
Write of size 4 at 0x71t89554701d0 by thread T1:
#0 Threadl(voidx) simple_race.cc:8 (exe+0x000000006e66)

Previous write of size 4 at 0x7189554701d0 by thread T2:
#0 Thread2(void*) simple_race.cc:13 (exe+0x000000006ed6)

Thread T1 (tid=26328, running) created at:

#0 pthread _create tsan_interceptors.cc:683 (exe+0x00000001108b)
#1 main simple_race.cc:19 (exe+0x000000006f39)

Thread T2 (tid=26329, running) created at:
#0 pthread_create tsan_interceptors.cc:683 (exe+0x00000001108b)
#1 main simple_race.cc:20 (exe+0x000000006f63)

ThreadSanitizer: reported 1 warnings

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Domain-specific debugging

RVPredict: Data race detector (Java)

package examples;
Data race on field examples.SimpleRace.sharedVar: {{{

public class SimpleRace A Concurrent write in thread T10 (locks held: {})
—-———> at examples.SimpleRace$l.threadl(SimpleRace.java:11)
static int sharedVar; at examples.ThreadRunner$l.run(ThreadRunner.java:17)
T10 1s created by T1
public static void main(String[] args) 1 at examples.ThreadRunner.<init>(ThreadRunner.java:26)
new ThreadRunner() {
@Override Concurrent read in thread T11l (locks held: {})
public void threadl() { ————> at examples.SimpleRace$l.thread2(SimpleRace.java:16)
sharedVar++; at examples.ThreadRunner$2.run(ThreadRunner.java:23)
} T11l 1s created by T1
at examples.ThreadRunner.<init>(ThreadRunner. java:27)
@Override Fr}
public void thread2() {
sharedVar++;
}

b

https://runtimeverification.com/blog/detecting-popular-data-races-in-java-using-rv-predict/

https://runtimeverification.com/blog/detecting-popular-data-races-in-java-using-rv-predict/

Domain-specific debugging

React Developer Tools

[‘_"_I Elements Sources Console Components &3 Profiler Performance Network » o
" Search (text or /regex/) &t TodoTextInput OO :- IR
v App DIOPS 0
~ Header T -
newlodo: (¢
TodoTextInput
v MatnGection onSave: onSave()
.;CdGLi.S’ placeholder: What needs to be done?
TodoItem key="@0" hooks 0
rOOEer State: Try React Deviools
Link
Link rendered by
Link Header
App

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Activity: Debugging (Continued)

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/activity /-1

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/activity7-1

What are code reviews?

... re-api/src/main/java/org/apache/maven/surefire/booter/CommandReader. java -{~Fﬁderesowed

case BYE_ACK:
//After SHUTDOWN no more commands can come. Hence, do NOT go back to blocking in IO
callListeners(command);
return;
default:
callListeners(command);

Tibor17 on Nov 12, 2019 Contributor ®

The listeners are called here. But we can put IF condition:
IF BYE_ACK -> return atthe end of the default case.

Tibor17 on Nov 12, 2019 Contributor ®

Instead of calling the return we can make softer exit with CommandReader.this.state.set(
TERMINATED) .

eolivelli on Dec 17, 2019 Contributor ®

Yes, | came to this same conclusion, change the state to TERMINATED.

jon-bell on Dec 19, 2019 Author Contributor ®)
Changed.

D v W W

Linus’ Law

*Many eyes make all bugs shallow”

public disconnect(session : PlayerSession) : void {
console.log(Disconnect: ${session.sessionToken});
this. sessions = this._ sessions.filter(s => s === session);

this. listeners.map((l) => l.onPlayerDisconnected(session.player));

}

Formal “Code Inspections”

The origins of Code Reviews

 Formal process for reading through code as a group
* Applied to all project documents

e 3-5 person team reads the code aloud and explains what is being done

* (Generally a 60 minute meeting

e |Less efficient (defects/cost) than modern review processes

Why do we perform code reviews?

Survey internal to Google

* Original motivation: “force developers to write code that other developers
could understand”

* Three key benefits found:
* Ensure consistent style/design standards followed
 Ensure adequate tests

* Provides a security control (gatekeeping, especially for critical code)

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

Why do we perform code reviews?

Different team members have different motivations

Project lead

Education
Maintaining
Maintaining norms
- norms Gatek :
Readability Develo er areneepng Other
reviewers p teams
Education o ;
Maintaining ucation
norms ccident prevention
New team Other team
members members

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

Why do we perform code reviews?

Survey internal to Microsoft

Ranked Motivations From Developers
Top Second Third [N

Finding defects -
Code Improvement _
Alternative Solutions _

Knowledge Transfer

Team Awareness

]
[]
Improving Dev Process -
]
[]
[

Share Code Ownership

Avoid Build Breaks

Track Rationale

Team Assessment -

0 200 400 600
Responses

Fig. 3. Developers’ motivations for code review.

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

Studies show self-review is less effective
300 reviews at Cisco in 2006

Effect of Author Preparation on Defect Density

g 8

~J
o

=8

=

(e
o

Average Defect Density (Defects/kLOC)
=N

N
o

—_
o

Without Preparation With Preparation

Even if developers pre-review their code, many defects still found in peer review

“Best Kept Secrets of Peer Code Review”, Jason Cohen, SmartBear Software, 2006

How do we perform code reviews?

Who reviews what?

 Don’t review your own code
* |deal: reviewer has different background, different experience
« Come in with no preconceived idea of “correctness”

 Don’t be biased by “what was intended”

Code Review: Proposed Patch

“Prevents more than 5 users from joining the room”

xport async function roomJoinHandler(requestData: TownJoinRequest): Promise<ResponseEnvelope<TownJoinResponse>> {
const room = CoveyRoom.findInstance(requestData.coveyTownID) ;
if (!room) {

return {

isOK: false,

message: 'Error: No such room',
}i

}

const newPlayer = new Player(requestData.userName) ;
const newSession = await room.registerPlayer(newPlayer);
assert(newSession.videoToken);
if (room.occupancy > 5) {
return {
isOK: false,
message: 'The room is full!',
}i
}
return {
isOK: true,
response: {
coveyUserID: newPlayer.id,
coveySessionToken: newSession.sessionToken,
providerVideoToken: newSession.videoToken,
currentPlayers: room.getPlayers(), // TODO check
friendlyName: room.friendlyName,
isPubliclylListed: room.isPubliclyListed,

o

How do we perform code reviews?

What are we looking for?

AIRBUS A340

NORMAL CHECK LIST

FLIGHT CREW OPERATING MANUAL

BEFORE START
COCPIT PREP COMPLETE
GEAR PINS asd COVERS REMOVED
SIGNS : ON
:&?soumw ‘ ":E
TO DATA 3T
BARD REF. . T SET
WINDOWS/DOORS CLOSED
BEACON ON
THR LEVERS WLE
PARKING BRAXE . AS RORD
AFTER STARY
L ... AS RORD
ECAM STATUS . CHECKED
THR LEVERS WLE
PARKING BRAKE AS RORD
BEFORE TAKEOFF
FLIGHT CONTROLS. CHECKED
FUGHT INST. CMECKED
BRIEFING. CONFIRMED
FLAPS SETTING. . . . CONE = SET
V1, VR, V2 / FLEX TEMP. . . SET
ATC. . . . SET
ECAM MEMO . TO ALL GREEN
s “ARD PR W
CABN READY "N OGO
N e
“WNE N
CABIN CREW. . . ADVISED
ENG MODE SEL AS RORD
PACKS. . AS RORD
AFTER TAXEQFF / CLIMB
LDG GEAR , w
FLAPSRETRACTED
PACKS ON
BARO REF.STD

APPROACH
ERIEFING ! CONFIRMED
ECAM STATUS CHECXED
SEAT BELTS ON
T A
ENG MODE SEL.ASRORD
LANDING
CABINCREW.ADVISED
NMR SPEED/OFF
ECAM MEMO. LDG ALL GREEN
fBEAS N s WY
CCABN MADY IS e
TN
AFTER LANDING
AP o o oo o e w w kB VAL
PO . e T i s e o . ISAREED
AP i e o0 b RS e s AN s = L TS
PADAR.0FF/ST8Y
PARKING
APU BLEED ON
ENGINES . OFF
SEAT BELTS. . .
Ol A A AS RORD
RUBL RAIPRN & v wrrve wriremiary wave R
PARKING BRAXE and CHOCKS. . . . AS RORD
SECURING THE AIRCRAFT
ADIRS e OFF
VBRI S e s e s Ve OFF
L L R PN o+
EMEREXITLIGMYS. OFF
NO SMOKING, OFF
APU and BAT OFF

™ ATG VIR T st i e e e et R el e s aiats NOTIFY
-~ AP (only if MAN CAB PR has beenwused). CHECK ZERO
o 2ot sevo. MOOE SEC on MAN 2o WS CTL AL P
R TS RV IR i G i A S R OFF
o RO (GHRIEN BRI ey o s NOTIFY
= FIRE PV TENR 200 APU -« o oo 0mm im0 s iz, s aimcmmin. o PUSH
= RRENTS (N B AP - o o siwiainne s onisre afarsieiiaaiarsiais AS RORD
o EVAGURTEIN. 5595 o 4054 anvis st I e e d e s s eI oR o s e ran s INITIATE
pgguemee 3 9 2 3 T 3w = ¥ § o9
oL 6 $ H 3 2 fpevees
NOSE LP

More on checklists: https://www.newyorker.com/magazine/2007/12/10/the-checklist

https://www.newyorker.com/magazine/2007/12/10/the-checklist

Code review checklists

Some common ideas to get your checklist started
 Am | able to understand the code easily?

* Does the code follow our style guidelines?

e |s the same code duplicated more than once?

* Does this code meet our non-functional requirements??
* |s this code maintainable”? Does it have tests?

* Does this code have unintended side-effects?

 Can include issues previously detected in the past

Code Review: Proposed Patch

“Prevents more than 5 users from joining the room”

it('Does not allow more than 5 users to join a room', async () => {
const newRoom = await apiClient.createRoom({isPubliclyListed: true, friendlyName: 'test'});
const promisesShouldBeAccepted = [];

for (let 1 = 0; 1 < 5; 1 += 1) {
promisesShouldBeAccepted.push(apiClient.joinRoom({userName: 'test’', coveyTownID: newRoom.coveyTownID}));

}

await Promise.all(promisesShouldBeAccepted);

})i

Code Review: Proposed Patch

“Prevents more than 5 users from joining the room”

it('Does not allow more than maximum users to join a room', async () => {
const newRoom = await apiClient.createRoom({isPubliclyListed: true, friendlyName: 'test'});

const rooms = await apiClient.listRooms();

const createdRoomInfo = rooms.towns.find(room => room.coveyTownID === newRoom.coveyTownID) ;
assert(createdRoomInfo);

const promisesShouldBeAccepted = [];

for (let 1 = 0; 1 < createdRoomInfo.maximumOccupancy; 1 += 1) {

promisesShouldBeAccepted.push(apiClient.joinRoom({userName: 'test’', coveyTownID: newRoom.coveyTownID}));

}

awalit Promise.all (promisesShouldBeAccepted);
await expect(apiClient

. joinRoom({coveyTownID: newRoom.coveyTownID, userName: 'test'}))
.rejects.toThrowError();

)i

Code Review: Proposed Patch

“Prevents more than 5 users from joining the room”

it('Does not allow more than maximum users to join a room', async () => {
const newRoom = await apiClient.createRoom({isPubliclyListed: true, friendlyName: 'test’'});
const rooms = await apiClient.listRooms();
const createdRoomInfo = rooms.towns.find(room => room.coveyTownID === newRoom.coveyTownID) ;
assert(createdRoomInfo);
const promisesShouldBeAccepted = [];
for (let 1 = 0; 1 < createdRoomInfo.maximumOccupancy; 1 += 1) {

promisesShouldBeAccepted.push(apiClient.joinRoom({userName: 'test’', coveyTownID: newRoom.coveyTownID}));
}

await Promise.all(promisesShouldBeAccepted);

await expect(apiClient
. JoinRoom({coveyTownID: newRoom.coveyTownID, userName: 'test’'}))
.rejects.toThrowError();

// Now list rooms
const roomsAfterJoining = awalit apiClient.listRooms();

const updatedRoomInfo = roomsAfterJoining.towns.find(r => r.coveyTownID === newRoom.coveyTownID) ;
assert(updatedRoomInfo);

expect(updatedRoomInfo.currentOccupancy).toBelLessThanOrEqual (updatedRoomInfo.maximumOccupancy) ;

When do we perform code reviews?

In modern development environments (large OSS + companies)

* For every change that gets merged upstream!

* |f you are asked to review something, you must do it soon (but don’t interrupt
current task)

* Include the entire context of a change, not just a diff

* (Google’s entire process is publicly documented: https://google.github.io/eng-
practices/review/

https://google.github.io/eng-practices/review/
https://google.github.io/eng-practices/review/
https://google.github.io/eng-practices/review/
https://google.github.io/eng-practices/review/

This work is licensed under a Creative Commons
Attribution-ShareAlike license

* This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

e You are free to:

e Share — copy and redistribute the material in any medium or format
 Adapt — remix, transform, and build upon the material
e for any purpose, even commercially.

* Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

e ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

