
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 12 - Debugging II + Code Review

Zoom Mechanics

• Recording: This meeting is being recorded

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Today’s Agenda

Administrative:

HW3 due tomorrow!

Today’s session:

Debugging

Code Review

What are your pro debugging strategies?

Domain-specific debugging
Valgrind: C/C++ Memory Errors

$./main

Segmentation fault (core dumped)

$ valgrind ./main

==8515== Memcheck, a memory error detector

==8515== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.

==8515== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info

==8515== Command: ./main

==8515==

==8515== Conditional jump or move depends on uninitialised value(s)

==8515== at 0x400813: fail() (main.cpp:7)

==8515== by 0x40083F: main (main.cpp:13)

==8515==

==8515== Invalid read of size 4

==8515== at 0x400819: fail() (main.cpp:8)

==8515== by 0x40083F: main (main.cpp:13)

==8515== Address 0x0 is not stack'd, malloc'd or (recently) free'd

==8515==

==8515==

==8515== Process terminating with default action of signal 11 (SIGSEGV): dumping core

==8515== Access not within mapped region at address 0x0

==8515== at 0x400819: fail() (main.cpp:8)

==8515== by 0x40083F: main (main.cpp:13)

==8515== If you believe this happened as a result of a stack

==8515== overflow in your program's main thread (unlikely but

==8515== possible), you can try to increase the size of the

==8515== main thread stack using the --main-stacksize= flag.

==8515== The main thread stack size used in this run was 8388608.

==8515==

==8515== HEAP SUMMARY:

==8515== in use at exit: 72,704 bytes in 1 blocks

==8515== total heap usage: 1 allocs, 0 frees, 72,704 bytes allocated

==8515==

==8515== LEAK SUMMARY:

==8515== definitely lost: 0 bytes in 0 blocks

==8515== indirectly lost: 0 bytes in 0 blocks

==8515== possibly lost: 0 bytes in 0 blocks

==8515== still reachable: 72,704 bytes in 1 blocks

==8515== suppressed: 0 bytes in 0 blocks

==8515== Rerun with --leak-check=full to see details of leaked memory

==8515==

==8515== For counts of detected and suppressed errors, rerun with: -v

==8515== Use --track-origins=yes to see where uninitialised values come from

==8515== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

https://www.valgrind.org/info/tools.html

https://www.valgrind.org/info/tools.html

Domain-specific debugging
TSan: Data race detector for C/C++/Go
$ cat simple_race.cc

#include <pthread.h>

#include <stdio.h>

int Global;

void *Thread1(void *x) {

 Global++;

 return NULL;

}

void *Thread2(void *x) {

 Global--;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

}

$ clang++ simple_race.cc -fsanitize=thread -fPIE -pie -g

$./a.out

==================

WARNING: ThreadSanitizer: data race (pid=26327)

 Write of size 4 at 0x7f89554701d0 by thread T1:

 #0 Thread1(void*) simple_race.cc:8 (exe+0x000000006e66)

 Previous write of size 4 at 0x7f89554701d0 by thread T2:

 #0 Thread2(void*) simple_race.cc:13 (exe+0x000000006ed6)

 Thread T1 (tid=26328, running) created at:

 #0 pthread_create tsan_interceptors.cc:683 (exe+0x00000001108b)

 #1 main simple_race.cc:19 (exe+0x000000006f39)

 Thread T2 (tid=26329, running) created at:

 #0 pthread_create tsan_interceptors.cc:683 (exe+0x00000001108b)

 #1 main simple_race.cc:20 (exe+0x000000006f63)

==================

ThreadSanitizer: reported 1 warnings

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Domain-specific debugging
RVPredict: Data race detector (Java)

package examples;

public class SimpleRace {

 static int sharedVar;

 public static void main(String[] args) {

 new ThreadRunner() {

 @Override

 public void thread1() {

 sharedVar++;

 }

 @Override

 public void thread2() {

 sharedVar++;

 }

 };

 }

}

Data race on field examples.SimpleRace.sharedVar: {{{

 Concurrent write in thread T10 (locks held: {})

 ----> at examples.SimpleRace$1.thread1(SimpleRace.java:11)

 at examples.ThreadRunner$1.run(ThreadRunner.java:17)

 T10 is created by T1

 at examples.ThreadRunner.<init>(ThreadRunner.java:26)

 Concurrent read in thread T11 (locks held: {})

 ----> at examples.SimpleRace$1.thread2(SimpleRace.java:16)

 at examples.ThreadRunner$2.run(ThreadRunner.java:23)

 T11 is created by T1

 at examples.ThreadRunner.<init>(ThreadRunner.java:27)

}}}

https://runtimeverification.com/blog/detecting-popular-data-races-in-java-using-rv-predict/

https://runtimeverification.com/blog/detecting-popular-data-races-in-java-using-rv-predict/

Domain-specific debugging
React Developer Tools

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Activity: Debugging (Continued)

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/activity7-1

https://neu-se.github.io/CS4530-CS5500-Spring-2021/Activities/activity7-1

What are code reviews?

Linus’ Law

“Many eyes make all bugs shallow”

public disconnect(session : PlayerSession) : void {

 console.log(`Disconnect: ${session.sessionToken}`);

 this._sessions = this._sessions.filter(s => s === session);

 this._listeners.map((l) => l.onPlayerDisconnected(session.player));

}

Formal “Code Inspections”
The origins of Code Reviews

• Formal process for reading through code as a group

• Applied to all project documents

• 3-5 person team reads the code aloud and explains what is being done

• Generally a 60 minute meeting

• Less efficient (defects/cost) than modern review processes

Why do we perform code reviews?
Survey internal to Google

• Original motivation: “force developers to write code that other developers
could understand”

• Three key benefits found:

• Ensure consistent style/design standards followed

• Ensure adequate tests

• Provides a security control (gatekeeping, especially for critical code)

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

Why do we perform code reviews?
Different team members have different motivations

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

Why do we perform code reviews?
Survey internal to Microsoft

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

Studies show self-review is less effective
300 reviews at Cisco in 2006

“Best Kept Secrets of Peer Code Review”, Jason Cohen, SmartBear Software, 2006

Even if developers pre-review their code, many defects still found in peer review

How do we perform code reviews?
Who reviews what?

• Don’t review your own code

• Ideal: reviewer has different background, different experience

• Come in with no preconceived idea of “correctness”

• Don’t be biased by “what was intended”

Code Review: Proposed Patch
“Prevents more than 5 users from joining the room”

xport async function roomJoinHandler(requestData: TownJoinRequest): Promise<ResponseEnvelope<TownJoinResponse>> {

 const room = CoveyRoom.findInstance(requestData.coveyTownID);

 if (!room) {

 return {

 isOK: false,

 message: 'Error: No such room',

 };

 }

 const newPlayer = new Player(requestData.userName);

 const newSession = await room.registerPlayer(newPlayer);

 assert(newSession.videoToken);

 if (room.occupancy > 5) {

 return {

 isOK: false,

 message: 'The room is full!',

 };

 }

 return {

 isOK: true,

 response: {

 coveyUserID: newPlayer.id,

 coveySessionToken: newSession.sessionToken,

 providerVideoToken: newSession.videoToken,

 currentPlayers: room.getPlayers(), // TODO check

 friendlyName: room.friendlyName,

 isPubliclyListed: room.isPubliclyListed,

 },

 };

How do we perform code reviews?
What are we looking for?

More on checklists: https://www.newyorker.com/magazine/2007/12/10/the-checklist

https://www.newyorker.com/magazine/2007/12/10/the-checklist

Code review checklists
Some common ideas to get your checklist started
• Am I able to understand the code easily?

• Does the code follow our style guidelines?

• Is the same code duplicated more than once?

• Does this code meet our non-functional requirements?

• Is this code maintainable? Does it have tests?

• Does this code have unintended side-effects?

• Can include issues previously detected in the past

Code Review: Proposed Patch
“Prevents more than 5 users from joining the room”

it('Does not allow more than 5 users to join a room', async () => {

 const newRoom = await apiClient.createRoom({isPubliclyListed: true, friendlyName: 'test'});

 const promisesShouldBeAccepted = [];

 for (let i = 0; i < 5; i += 1) {

 promisesShouldBeAccepted.push(apiClient.joinRoom({userName: 'test', coveyTownID: newRoom.coveyTownID}));

 }

 await Promise.all(promisesShouldBeAccepted);

});

Code Review: Proposed Patch
“Prevents more than 5 users from joining the room”

it('Does not allow more than maximum users to join a room', async () => {

 const newRoom = await apiClient.createRoom({isPubliclyListed: true, friendlyName: 'test'});

 const rooms = await apiClient.listRooms();

 const createdRoomInfo = rooms.towns.find(room => room.coveyTownID === newRoom.coveyTownID);

 assert(createdRoomInfo);

 const promisesShouldBeAccepted = [];

 for (let i = 0; i < createdRoomInfo.maximumOccupancy; i += 1) {

 promisesShouldBeAccepted.push(apiClient.joinRoom({userName: 'test', coveyTownID: newRoom.coveyTownID}));

 }

 await Promise.all(promisesShouldBeAccepted);

await expect(apiClient

 .joinRoom({coveyTownID: newRoom.coveyTownID, userName: 'test'}))

 .rejects.toThrowError();

});

Code Review: Proposed Patch
“Prevents more than 5 users from joining the room”

it('Does not allow more than maximum users to join a room', async () => {

 const newRoom = await apiClient.createRoom({isPubliclyListed: true, friendlyName: 'test'});

 const rooms = await apiClient.listRooms();

 const createdRoomInfo = rooms.towns.find(room => room.coveyTownID === newRoom.coveyTownID);

 assert(createdRoomInfo);

 const promisesShouldBeAccepted = [];

 for (let i = 0; i < createdRoomInfo.maximumOccupancy; i += 1) {

 promisesShouldBeAccepted.push(apiClient.joinRoom({userName: 'test', coveyTownID: newRoom.coveyTownID}));

 }

 await Promise.all(promisesShouldBeAccepted);

await expect(apiClient

 .joinRoom({coveyTownID: newRoom.coveyTownID, userName: 'test'}))

 .rejects.toThrowError();

 // Now list rooms

 const roomsAfterJoining = await apiClient.listRooms();

 const updatedRoomInfo = roomsAfterJoining.towns.find(r => r.coveyTownID === newRoom.coveyTownID);

 assert(updatedRoomInfo);

 expect(updatedRoomInfo.currentOccupancy).toBeLessThanOrEqual(updatedRoomInfo.maximumOccupancy);

});

When do we perform code reviews?
In modern development environments (large OSS + companies)

• For every change that gets merged upstream!

• If you are asked to review something, you must do it soon (but don’t interrupt
current task)

• Include the entire context of a change, not just a diff

• Google’s entire process is publicly documented: https://google.github.io/eng-
practices/review/

https://google.github.io/eng-practices/review/
https://google.github.io/eng-practices/review/
https://google.github.io/eng-practices/review/
https://google.github.io/eng-practices/review/

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.

• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

